Tetrahedron Letters No. 38, pp 3297 - 3298, 1975. Pergamon Press. Printed in Great Britain.

## FERN CONSTITUENTS: DRYOCRASSOL AND DRYOCRASSYL ACETATE ISOLATED FROM THE LEAVES OF ASPIDIACEOUS FERN

H. Ageta\*, K. Shiojima, Y. Araı, T. Kasama and K. Kajıı Showa College of Pharmaceutical Sciences, 5-1-8 Tsurumaki, Setagaya-ku, Tokyo

(Received in Japan 12 July 1975; received in UK for publication 12 August 1975)

Two hydrocarbons, hop-22(29)-ene and fern-9(11)-ene, have previously been reported from the leaves of *Dryopteris crassirhizoma* NAKAI (Oshida in Japanese) from our laboratory.<sup>1)</sup> Further investigations on the triterpenoids from the same source afforded a new alcohol and its acetate, namely dryocrassol (Ib) and dryocrassyl acetate (IIb), along with 22-hydroxyhopane,<sup>2)</sup> adiantone (V),<sup>3)</sup> ferna-7,9(11)-diene, fern-9(11)-en-12-one,<sup>1)</sup> and a  $\beta$ -sitosterol mixture. IIb has also been isolated from the leaves of *Arachniodes standisii* OHWI (Ryomenshida) and *Polystichum polyblepharum* PR. (Inode) as the main triterpenoid constituent.

Ib,  $C_{30}H_{52}O$ , m.p. 245-247°,  $[\alpha]_D$  +68.0°, V KBr cm<sup>-1</sup> 3330, 1026, gave the acetate (IIb), m.p. 196-198°,  $[\alpha]_D$  +58.0°, V KBr cm<sup>-1</sup> 1729, 1226. The PMR and MS of Ib [3H each at  $\delta 0.85(C-23)$ , 0.79(24), 0.81(25), 0.96(26), 0.96(27), 0.73(28), 1.03d(J=6.5Hz. 29) and 2H at  $\delta 3.50m$ ; m/e 428 (M<sup>+</sup> 5%), 413(2), 369(7), 207(100) and 191(64)] as well as of IIb strongly suggested Ib to be a triterpenoid of the hopane skeleton having a primary alcohol group on the side chain.

Chromic acid oxidation of Ib in pyridine gave an aldehyde (IIIb), m.p. 184-187°,  $[\alpha]_D$  +60.0°,  $\nu$  KBr cm<sup>-1</sup> 2700, 1725, which was reduced into only Ib with LiAlH4 and pure hopane,<sup>4)</sup> m.p. 221-222°, by Wolff-Kishner method. Boiling of IIIb with 5%-KOH-methanol afforded unexpectedly a mixture of two alcohols, Ib and Ia, the latter of which, m.p. 242-244°,  $[\alpha]_D$  +35.0° [acetate(IIa), m.p. 214-216°], was proved to be identical with neriifoliol<sup>5)</sup> by comparison of m.p.s, IR and TLC characters with those of authentic sample. Hydroboration of hop-22(29)-ene (IV) gave also a mixture (1:1) of Ia and Ib. In consequence, either Ia or Ib should be hopane-29(or 30)-o1 having a epimeric center at C-22.

By the way, LiAlH4 reduction of adiantone (V) gave two isomeric alcohols, adiantol A (less polar) (VIa), m.p. 211-213°,  $[\alpha]_D +40.0°$  [acetate (VIIa), m.p. 205-207°,  $[\alpha]_D +35.0°$ ] and adiantol B (more polar) (VIb), m.p. 252-256°,  $[\alpha]_D +76.0°$  [acetate (VIIb), m.p. 222-224°,  $[\alpha]_D +55.0°$ ]. The absolute configuration at C-22 of the latter alcohol was proved to be 225 by X-ray analysis of the corresponding bromoacetate.<sup>6)</sup> By Grignard reaction of IIIb with CH<sub>3</sub>MgI there obtained a mixture (1:1) of two alcohols, VIIIb, m.p. 250-254°,  $\vee$  KBr cm<sup>-1</sup> 3430, 1127, and VIIIb', m.p. 255-258°,  $\vee$  KBr cm<sup>-1</sup> 3500, 1090. Chromic acid oxidation of VIIIb or VIIIb' in pyridine afforded the same methyl ketone (IXb), m.p. 239-242°,  $[\alpha]_D +43.0°$ ,  $\vee$  KBr cm<sup>-1</sup> 1713, which was oxidized with perbenzoic acid into an alcohol acetate as a sole product. The fact that the alcohol acetate was proved to be identical with adiantol B acetate (VIIb) established the configuration at C-22 of IXb, VIIIb, VIIIb', IIIb, Ib and IIb to be 225, and of Ia and IIa to be 22*R* as shown as in



the chart. We would propose the numbering of side chain on the hopane skeleton so as neriifoliol (Ia) to be hopan-29-ol and dryocrassol (Ib) to be hopan-30-ol.

Acknowledgement. The authors wish to express their gratitude to Drs. K. Takeda and H. Koyama of Shionogi Research Laboratories for studying X-ray analysis of adiantol B bromoacetate, and to Dr. C. R. Mitra of National Botanic Gardens, Lucknow, for giving a sample of neriifoliol.

## References

- a) H. Ageta, K. Iwata, K. Yonezawa, Chem. Pharm. Bull.(Tokyo), <u>11</u>, 408 (1963) b) H. Ageta, K. Iwata, S. Natori, Tetrahedron Letters, <u>1963</u>, 1447
- 2) H. Ageta, K. Iwata, Y. Otake, Chem. Pharm. Bull. (Tokyo), 11, 407 (1963)
- 3) G. Berti, F. Bottari, S. Marsili, J.-M. Lhen, P. Witz, G. Ourisson, Tetrahedron Letters, <u>1963</u>, 1283
- 4) Y. Tsuda, K. Isobe, S. Fukushima, H. Ageta, K. Iwata, Tetrahedron Letters, <u>1967</u>, 23
- 5) G. N. Pandey, C. R. Mitra, Tetrahedron Letters, 1967, 1353
- 6) H. Koyama, H. Nakai, J. Chem. Soc. B, 1970, 546